欧洲有码中文字幕在线_久久美利坚合众国久久综合_日本A级中文在线_亚洲中文自拍另av

一元二次方程的概念教學(xué)反思

時(shí)間:2022-06-23 17:27:48 教學(xué)反思
  • 《一元二次方程》的優(yōu)秀教案 推薦度:
  • 教學(xué)反思 推薦度:
  • 會(huì)計(jì)教學(xué)反思 推薦度:
  • 體育教學(xué)反思 推薦度:
  • 美術(shù)教學(xué)反思 推薦度:
  • 相關(guān)推薦

一元二次方程的概念教學(xué)反思

  身為一名到崗不久的老師,教學(xué)是我們的任務(wù)之一,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,那么什么樣的教學(xué)反思才是好的呢?下面是小編為大家整理的一元二次方程的概念教學(xué)反思,僅供參考,歡迎大家閱讀。

一元二次方程的概念教學(xué)反思

一元二次方程的概念教學(xué)反思1

  學(xué)生對(duì)一元二次方程概念的理解基本結(jié)束了。我認(rèn)為數(shù)學(xué)教學(xué)要以提高學(xué)生的數(shù)學(xué)素質(zhì)為指導(dǎo)思想,以學(xué)生積極參與教學(xué)活動(dòng)為目標(biāo),以探索概念的過程和展開思維分析為主線,在課堂教學(xué)中,教師充分調(diào)動(dòng)學(xué)生的一切因素,讓學(xué)生在和諧、愉悅的氛圍中獲取知識(shí)、掌握方法。

  探索新課改下的數(shù)學(xué)課堂教學(xué)模式,優(yōu)化數(shù)學(xué)課堂教學(xué)結(jié)構(gòu),還是一個(gè)長(zhǎng)期而艱苦的工作。我堅(jiān)信只要我們不斷地創(chuàng)新,大膽地探索,就一定能取得好的教學(xué)效果。

一元二次方程的概念教學(xué)反思2

  一元二次方程是學(xué)生學(xué)習(xí)了一元一次方程和二元一次方程組之后所接觸的第三類方程,所以對(duì)于它的概念,學(xué)生很容易理解。通過這節(jié)課的教學(xué)我有如下幾點(diǎn)感想:

  一、引導(dǎo)學(xué)生觀察、類比、聯(lián)想已學(xué)的一元一次方程、二元一次方程,歸納、總結(jié)出一元二次方程,讓學(xué)生充分感受知識(shí)的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出覺得意外,讓學(xué)生跳一跳就可以摘到桃子。

  二、合理選材,優(yōu)化教學(xué),在教學(xué)中,忠實(shí)于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過一系列的活動(dòng)來展開教學(xué),發(fā)展了學(xué)生的思維能力,增強(qiáng)了學(xué)生思考的習(xí)慣,增強(qiáng)了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。

  三、整節(jié)課的設(shè)計(jì)以落實(shí)雙基為起點(diǎn),培養(yǎng)學(xué)生獨(dú)立思考的能力,重視知識(shí)和產(chǎn)生過程,關(guān)注人的發(fā)展。無論是教學(xué)環(huán)節(jié)設(shè)計(jì),還是作業(yè)的布置上,我注意分層次教學(xué),讓每一個(gè)學(xué)生都得到不同的發(fā)展

  四、為了真正做到有效的合作學(xué)習(xí),我在活動(dòng)中大膽地讓學(xué)生自主完成。先讓學(xué)生把問題提出來,然后讓學(xué)生帶著問題去討論,這樣學(xué)生在討論時(shí)就有目的,就會(huì)事半功倍。也讓不同層次的學(xué)生得到不同的發(fā)展。也符合新課程的教學(xué)理念。

  不足之處:引入方面有待加強(qiáng),不夠激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強(qiáng),應(yīng)給學(xué)生做出示范;給學(xué)生思考的時(shí)間還不夠。

一元二次方程的概念教學(xué)反思3

  對(duì)于一元二次方程,學(xué)生在前面已經(jīng)學(xué)習(xí)過一元一次方程、二元一次方程和分式方程的知識(shí),也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。是初中教材中一個(gè)重要的內(nèi)容,通過這節(jié)課的教學(xué)我有如下幾點(diǎn)體會(huì):

  第一、以問題為主線,解放學(xué)生的身心,激發(fā)學(xué)生的靈感;體現(xiàn)“自主-----合作-----探究”的學(xué)習(xí)方式。比如引入部分采用同一背景的三個(gè)小問題引入顯得整體性和連貫性較強(qiáng)。從三個(gè)小問題中得出方程后問2(x-1)+20=100是我們?cè)鴮W(xué)過的哪類方程?再問其他的方程也是一元一次方程嗎?繼續(xù)

  問:那它們和一元一次方程有什么相同點(diǎn)和不同點(diǎn)?接著啟發(fā):如果給它們命名,將怎么命名?這樣很自然就引入課題。再比如,為鞏固一元二次方程的概念設(shè)置6個(gè)方程,從中選出一元二次方程。

  再比如過渡到講一元二次方程的一般形式時(shí),將上題中最后一個(gè)小題追問:你是怎么判斷的?這樣的使一元二次方程美觀嗎?從數(shù)學(xué)的整潔美的角度讓學(xué)生明白需要把方程整理為左邊按未知數(shù)的次數(shù)從高到低排列,且右邊為零的形式。對(duì)整理后的四個(gè)方程總結(jié):任何關(guān)于x的一元二次方程都可以化成一般形式:ax2+bx+c=0,問a能取任何數(shù)嗎?為什么不能取零?b 、c可以為零嗎?進(jìn)而滲透了從特殊到一般的數(shù)學(xué)思想。

  第二、本節(jié)課知識(shí)的呈現(xiàn)作了重大調(diào)整,不是以講解為主方式也不是以單一的知識(shí)為線條,而是在突出數(shù)學(xué)知識(shí)的同時(shí),將數(shù)學(xué)知識(shí)和結(jié)論溶于數(shù)學(xué)活動(dòng)之中,這樣學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的過程就成了進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的過程,成了“做學(xué)問”的過程。在這樣的探究學(xué)習(xí)過程中,學(xué)生得到的數(shù)學(xué)知識(shí)是通過自己實(shí)驗(yàn)、觀察、討論、歸納得到的。比如講一元二次方程的一般形式時(shí)不是我們硬塞給學(xué)生的,而是從鞏固概念環(huán)節(jié)的6個(gè)方程中的最后一元二次方程作為銜接入口,現(xiàn)在要給它們洗漱整理后統(tǒng)一著裝,要求使方程的左邊按未知數(shù)的次數(shù)從高到低排列,且右邊為零的形式,這樣的連接比較自然。在這個(gè)整理活動(dòng)之中學(xué)生親自體驗(yàn)、觀察、歸納,討論出一元二次方程的一般形式ax2+bx+c=0。再比如過度到一元二次方程解的概念時(shí),利用了前面練習(xí)的最后一個(gè)小題的方程,告訴學(xué)生老師的年齡就是這個(gè)方程中x的取值,這樣既引出了解的'概念,也激發(fā)了學(xué)生解決問題的興趣。

  當(dāng)然本節(jié)課還有許多不足之處和困惑:

  一、情景創(chuàng)設(shè)時(shí)的4個(gè)例子中,最后一個(gè)與前面三個(gè)沒有任何聯(lián)系,當(dāng)時(shí)沒有認(rèn)真考慮設(shè)置與前面類似的背景。說明備課時(shí)還需認(rèn)真,必須為學(xué)生的學(xué)服務(wù),來不得半點(diǎn)馬虎。

  二、引出一元二次方程的一般形式時(shí),說是為了方程的整潔美,我感覺不妥,應(yīng)該怎么解釋,還需要同行與專家的指點(diǎn)。

  三、一元二次方程的一般形式中的a為什么不能等于0,我覺得教學(xué)中缺少學(xué)生的自我領(lǐng)悟,也就是缺少一個(gè)合理的學(xué)生活動(dòng)的過程。

  四、小結(jié)時(shí)比較死板,沒起到畫龍點(diǎn)睛的作用。

一元二次方程的概念教學(xué)反思4

  配方法解方程教學(xué)反思

  本節(jié)共分3課時(shí),第一課時(shí)引導(dǎo)學(xué)生通過轉(zhuǎn)化得到解一元二次方程的配方法,第二課時(shí)利用配方法解數(shù)字系數(shù)的一般一元二次方程,第3課時(shí)通過實(shí)際問題的解決,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的意識(shí)和能力,同時(shí)又進(jìn)一步訓(xùn)練用配方法解題的技能。

  在教學(xué)中最關(guān)鍵的是讓學(xué)生掌握配方,配方的對(duì)象是含有未知數(shù)的二次三項(xiàng)式,其理論依據(jù)是完全平方式,配方的方法是通過添項(xiàng):加上一次項(xiàng)系數(shù)一半的平方構(gòu)成完全平方式,對(duì)學(xué)生來說,要理解和掌握它,確實(shí)感到困難,,因此在教學(xué)過程中及課后批改中發(fā)現(xiàn)學(xué)生出現(xiàn)以下幾個(gè)問題:

  在利用添項(xiàng)來使等式左邊配成一個(gè)完全平方公式時(shí),等式的右邊忘了加。

  在開平方這一步驟中,學(xué)生要么只有正、沒有負(fù)的,要么右邊忘了開方。

  當(dāng)一元二次方程有二次項(xiàng)的系數(shù)不為1時(shí),在添項(xiàng)這一步驟時(shí),沒有將系數(shù)化為1,就直接加上一次項(xiàng)系數(shù)一半的平方。

  因此,要糾正以上錯(cuò)誤,必須讓學(xué)生多做練習(xí)、上臺(tái)表演、當(dāng)場(chǎng)講評(píng),才能熟練掌握。

  通過本節(jié)課的教學(xué),使我真正認(rèn)識(shí)到了自己課堂教學(xué)的成功與失敗。對(duì)我今后課堂教學(xué)有了一定引領(lǐng)方向有了很大的幫助。下面我就談?wù)勛约簩?duì)這節(jié)課的反思。

  本節(jié)課的重點(diǎn)主要有以下3點(diǎn):

  1. 找出a,b,c的相應(yīng)的數(shù)值

  2. 驗(yàn)判別式是否大于等于0

  3. 當(dāng)判別式的數(shù)值符合條件,可以利用公式求根.

  在講解過程中,我沒讓學(xué)生進(jìn)行(1)(2)步就直接用公式求根,第一次接觸求根公式,學(xué)生可以說非常陌生,由于過高估計(jì)學(xué)生的能力,結(jié)果出現(xiàn)錯(cuò)誤較多.

  1. a,b,c的符號(hào)問題出錯(cuò),在方程中學(xué)生往往在找某個(gè)項(xiàng)的系數(shù)時(shí)總是丟掉前面的符號(hào)

  2. 求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯(cuò)很多.

  其實(shí)在做題過程中檢驗(yàn)一下判別式著一步單獨(dú)挑出來做并不麻煩,直接用公式求值也要進(jìn)行,提前做著一步在到求根公式時(shí)可以把數(shù)值直接代入.在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求收到更好的教學(xué)效果

  3、板書不太理想。板書可以說在課堂教學(xué)也起關(guān)鍵作用,它可以幫學(xué)生溫習(xí)本課的內(nèi)容,而我許多本該板書的內(nèi)容全部反映在大屏幕上,在繼續(xù)講一下個(gè)內(nèi)容時(shí),這些內(nèi)容也就不會(huì)再出現(xiàn),只給學(xué)生瞬間的停留,這樣做也有欠妥當(dāng)。

  4、本節(jié)課沒有激情,學(xué)習(xí)的積極性調(diào)動(dòng)不起來,對(duì)學(xué)生地鼓勵(lì)性的語(yǔ)言過于少,可以說幾乎沒有。

  分解因式法解一元二次方程的教學(xué)反思

  教學(xué)時(shí)可以讓學(xué)生先各自求解,然后進(jìn)行交流并對(duì)學(xué)生的方法與課本上對(duì)小穎、小明、小亮的方法進(jìn)行比較與評(píng)析,發(fā)現(xiàn)分解因式是解某些一元二次方程較為簡(jiǎn)便的方法。利用分解因式法解題時(shí)。很多同學(xué)在解題時(shí)易犯的錯(cuò)誤是進(jìn)行了非同解變形,結(jié)果丟掉一根,對(duì)此教學(xué)時(shí)只能結(jié)合具體方程予以說明,另外,本節(jié)課學(xué)生易忽略一點(diǎn)是“或”與“且”的區(qū)別,應(yīng)做些說明。

  對(duì)于學(xué)有余力的學(xué)生可以介紹十字相乘法,它對(duì)二次三項(xiàng)式分解因式簡(jiǎn)便。

  通過以上的反思,我將在以后的教學(xué)中對(duì)自己存在的優(yōu)點(diǎn)我會(huì)繼續(xù)保持,針對(duì)不足我將會(huì)不斷地改進(jìn),使自己的課堂教學(xué)逐步走上一個(gè)新的臺(tái)階。

一元二次方程的概念教學(xué)反思5

  每一個(gè)數(shù)學(xué)概念都不是孤立存在的,都存在于一個(gè)相應(yīng)的系統(tǒng)中。把某一概念置于它所存在的相應(yīng)系統(tǒng)中進(jìn)行比較,引出新概念,不但能達(dá)到對(duì)概念的深刻理解,還能深化和發(fā)展概念。本課教學(xué)時(shí),我將一元二次方程與一元一次方程進(jìn)行類比,引出一元二次方程的概念。在類比的過程中既加深了對(duì)一元二次方程概念的理解又分析了這兩種方程的聯(lián)系和區(qū)別。

  在概念的理解上,教學(xué)時(shí)我從學(xué)生實(shí)際出發(fā),選擇一些簡(jiǎn)單的鞏固練習(xí)來辨認(rèn)、識(shí)別,幫助學(xué)生掌握概念的外延和內(nèi)涵;通過變式深化對(duì)概念的理解;通過新舊概念的對(duì)比,分析概念的矛盾運(yùn)動(dòng)。

  總之,概念課的引入是概念課教學(xué)的前提,概念的理解是概念課教學(xué)的核心。重視概念教學(xué),運(yùn)用多種方式、方法調(diào)動(dòng)學(xué)生感官、思維的積極性,學(xué)好用好概念是學(xué)好一切知識(shí)的基礎(chǔ)和關(guān)鍵。

【一元二次方程的概念教學(xué)反思】相關(guān)文章:

1.一元二次方程的概念教學(xué)反思