- 《海燕》說課稿 推薦度:
- 《背影》說課稿 推薦度:
- 《秋天》說課稿 推薦度:
- 說課稿 推薦度:
- 美術(shù)說課稿 推薦度:
- 相關(guān)推薦
《因式分解》說課稿
作為一無名無私奉獻(xiàn)的教育工作者,編寫說課稿是必不可少的,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么應(yīng)當(dāng)如何寫說課稿呢?以下是小編精心整理的《因式分解》說課稿,歡迎閱讀,希望大家能夠喜歡。
《因式分解》說課稿1
一、教材分析
?。ㄒ唬┑匚缓妥饔?/p>
分解因式與數(shù)是分解質(zhì)因數(shù)類似,是代數(shù)中一種重要的恒等變形,它是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,是整式乘法的逆向變形。在后面的學(xué)習(xí)過程中應(yīng)用廣泛,如:將分式通分和約分,二次根式的計(jì)算與化簡,以及解方程都將以它為基礎(chǔ)。因此分解因式這一章在整個(gè)教材中起到了承上啟下的作用。同時(shí),在因式分解中體現(xiàn)了數(shù)學(xué)的眾多思想,如:“化歸”思想、“類比”思想、“整體”思想等。因此,因式分解的學(xué)習(xí)是數(shù)學(xué)學(xué)習(xí)的重要內(nèi)容。根據(jù)《課標(biāo)》的要求,本章介紹了最基本的兩種分解因式的方法:提公因式法和運(yùn)用公式法(平方差、完全平方公式)。因此公式法是分解因式的重要方法之一,是現(xiàn)階段的學(xué)習(xí)重點(diǎn)
?。ǘW(xué)情分析:學(xué)生已經(jīng)學(xué)習(xí)了乘法公式中的完全平方公式和平方差公式,在上一節(jié)課學(xué)習(xí)了提公因式法和平方差公式分解因式,初步體會了分解因式與整式乘法的互逆關(guān)系,為本節(jié)課的學(xué)習(xí)奠定了良好的基礎(chǔ)。學(xué)生已經(jīng)建立了較好的預(yù)習(xí)習(xí)慣,為本節(jié)課的難點(diǎn)突破提供了先決條件。
?。ㄈ┙虒W(xué)目標(biāo)
1.知識與技能使學(xué)生了解運(yùn)用公式法分解因式的意義;會用公式法(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù));使學(xué)生清楚地知道提公因式法是分解因式的首先考慮的方法,再考慮用平方差公式或完全平方公式進(jìn)行分解因式。
2.過程與方法經(jīng)歷通過整式乘法的完全平方公式逆向得出運(yùn)用公式分解因式方法的過程,發(fā)展學(xué)生的逆向思維和推理能力。
3.情感與態(tài)度培養(yǎng)學(xué)生靈活的運(yùn)用知識的能力和操積極思考的良好行為,體會因式分解在數(shù)學(xué)學(xué)科中的地位和價(jià)值。
(四)教學(xué)重難點(diǎn)、
1.教學(xué)重點(diǎn):會運(yùn)用完全平方公式和分解因式,培養(yǎng)學(xué)生觀察、分析問題的能力。
2.教學(xué)難點(diǎn):準(zhǔn)確理解和掌握公式的結(jié)構(gòu)特征,并善于運(yùn)用完全平方公式分解因式。
3.易錯(cuò)點(diǎn):分解因式不徹底。
二、學(xué)法與教法分析
1.學(xué)法分析:
?、僮⒁夥纸庖蚴脚c整式乘法的關(guān)系,兩者是互逆的。
?、谧⒁馔耆椒焦降奶攸c(diǎn)。
2.教法分析:根據(jù)《課標(biāo)》的要求,結(jié)合本班學(xué)生的知識水平,本堂課采用對比,探究,講練結(jié)合的方法完成教學(xué)目標(biāo)。在教學(xué)過程中,所選例題保證基本的運(yùn)算技能,避免復(fù)雜的題型,直接用公式不超過兩次。
三、教學(xué)過程分析
(一)創(chuàng)設(shè)情境,發(fā)現(xiàn)新知
1.計(jì)算:通過讓學(xué)生回答完全平方公式,加深學(xué)生對公式的印象,并通過讓學(xué)生觀察完全平方公式而找到公式的特征(1)x2+2x+1(2)(3x+y)(3x-y)利用一組整式的乘法運(yùn)算復(fù)習(xí)完全平方公式和平方差公式,為探究運(yùn)用公式法分解因式打下基礎(chǔ)。
2.你能把多項(xiàng)式:(x+1)2分解因式嗎?學(xué)生從對比整式的乘法去探索分解因式方法,可以感受到這種互逆變形以及它們之間的聯(lián)系。
?。ǘ┖献鹘涣鳎剿餍轮?/p>
?。?)用語言怎樣敘述公式?(2)公式有什么結(jié)構(gòu)特征?(3)公式中的字母a、b可以表示什么?引導(dǎo)學(xué)生觀察平方差公式的結(jié)構(gòu)特征,
學(xué)生在互動(dòng)交流中,既形成了對知識的全面認(rèn)識,又培養(yǎng)了觀察、分析能力以及合作交流的能力。判斷:下列多項(xiàng)式能不能運(yùn)用完全平方公式分解因式?(1)x2+y2(2)x2+2xy+y2(3)x2-2xy+y2(4)x2+2xy-y2(5)-x2+2xy-y2通過這一組判斷,使學(xué)生加深理解和掌握完全平方公式的結(jié)構(gòu)特征,既突出了重點(diǎn),也培養(yǎng)了學(xué)生的應(yīng)用意識。
?。ㄈ├}探究,體驗(yàn)新知
?。ˋ)通過自學(xué)例3:分解因式(1)x2+14x+49(2)(m+n)2-6(m+n)+9引導(dǎo)學(xué)生得出分解因式的一般步驟,向?qū)W生滲透“化歸”思想。
要讓學(xué)生明確:(1)要先確定公式中的a和b;
?。?)學(xué)習(xí)規(guī)范的步驟書寫。
?。˙)例4、分解因式(1)3ax2+6axy+3ay2(2)-x2-4y2+4xy
加深對完全平方公式的理解,同時(shí)感知“整體”思想在分解因式中的應(yīng)用。
?。ㄋ模╇S堂練習(xí),鞏固新知
?。ˋ)練習(xí):把下列多項(xiàng)式中,哪幾個(gè)是完全平方式?請把是完全平方式的多項(xiàng)式因式分解(1)x2-x+1/4(2)9a2b2-3ab+1(3)1/4m2+3mn+9n2
(4)x-10x-25練習(xí)先由學(xué)生獨(dú)立完成,然后通過小組交流,發(fā)現(xiàn)問題及時(shí)解決。學(xué)生在解決問題的過程中培養(yǎng)了應(yīng)用意識,加強(qiáng)了知識落實(shí),突出了重點(diǎn)。
?。˙)分解因式:(1)x2-12xy+36y2(2)16a4+24a2b2+9b4(3)-2xy-x2-y2(4)4-12(x-y)+9(x-y)2例3在學(xué)生預(yù)習(xí)的前提下,由學(xué)生分析每一步的理由,明確:結(jié)果要化簡;分解要徹底,體會其中的整體思想。然后練習(xí)(1)(2)兩個(gè)同類型的題目。學(xué)生在交流與實(shí)踐中突破了難點(diǎn)。安排的習(xí)題題型不復(fù)雜,直接運(yùn)用公式不超過兩次,習(xí)題難易有梯度,滿足不同層次的同學(xué)的需要。
?。ㄎ澹w納小結(jié),形成體系先通過小組討論本節(jié)課的知識及注意問題,然后學(xué)生自由發(fā)言、互相補(bǔ)充,我進(jìn)行修正、精煉闡述。這樣,小結(jié)既梳理了知識,又點(diǎn)明了本節(jié)課的學(xué)習(xí)要點(diǎn),同時(shí)使學(xué)生對本節(jié)知識體系也有了一個(gè)清晰的認(rèn)識。最后剩余5-6分鐘進(jìn)行當(dāng)堂檢測。
?。┳鳂I(yè)分層,全面提升:采用分層布置作業(yè),滿足不同層次的同學(xué)的需要。
《因式分解》說課稿2
一、說教材
1、關(guān)于地位與作用。
今天我說課的內(nèi)容是浙教版七年級數(shù)學(xué)下冊第六章《因式分解》第四節(jié)課的內(nèi)容。因式分解是代數(shù)式的一種重要恒等變形,它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用。就本節(jié)課而言,著重闡述了三個(gè)方面,一是因式分解在簡單的多項(xiàng)式除法的應(yīng)用;二是利用因式分解求解簡單的一元二次方程;三是因式分解在數(shù)學(xué)應(yīng)用問題中的綜合運(yùn)用。通過本節(jié)課的學(xué)習(xí),不僅使學(xué)生鞏固因式分解的概念和原理,而且又為后面代數(shù)的學(xué)習(xí)作好了充分的準(zhǔn)備。
2、關(guān)于教學(xué)目標(biāo)。
根據(jù)這一節(jié)課的內(nèi)容,對于因式分解的應(yīng)用在整個(gè)代數(shù)教學(xué)中的地位和作用,我制定了以下教學(xué)目標(biāo):
?。ㄒ唬┲R目標(biāo):
?、贂闷椒讲罟胶屯耆椒焦椒纸庖蚴剑?/p>
?、跁靡蚴椒纸膺M(jìn)行簡單的多項(xiàng)式除法及求解簡單的一元二次方程。
?。ǘ┠芰δ繕?biāo):
①初步會綜合運(yùn)用因式分解知識解決一些簡單的數(shù)學(xué)應(yīng)用問題;
?、谂囵B(yǎng)分工協(xié)作及合作能力,鍛煉學(xué)生的語言表達(dá)及用數(shù)學(xué)語言的能力。
?、?培養(yǎng)學(xué)生觀察、分析、歸納的能力,并向?qū)W生滲透對比、類比的數(shù)學(xué)思想方法。
(三) 情感目標(biāo):
培養(yǎng)學(xué)生積極主動(dòng)參與的意識,使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣。并且讓學(xué)生明確數(shù)學(xué)學(xué)習(xí)的重要性,讓學(xué)生在利用數(shù)學(xué)知識解決生活實(shí)際問題中體驗(yàn)快樂。
3、關(guān)于教學(xué)重點(diǎn)與難點(diǎn)。
本節(jié)課利用因式分解知識解決問題是學(xué)習(xí)的關(guān)鍵,因此我將本課的學(xué)習(xí)重點(diǎn)、難點(diǎn)確定為:
學(xué)習(xí)的重點(diǎn):
?、贂闷椒讲罟胶屯耆椒焦椒纸庖蚴?;
?、跁靡蚴椒纸膺M(jìn)行簡單的多項(xiàng)式除法及求解簡單的一元二次方程。
學(xué)習(xí)的難點(diǎn):
?、僖蚴椒纸膺^程中出現(xiàn)的符號問題,整體思想和換元思想的應(yīng)用。
②綜合運(yùn)用因式分解知識解決數(shù)學(xué)應(yīng)用問題。
4、關(guān)于教法與學(xué)法。
學(xué)情分析:
?、倨吣昙墝W(xué)生對于代數(shù)式的運(yùn)算較之有理數(shù)運(yùn)算有較大的困難,由于因式分解是乘法運(yùn)算的逆運(yùn)算,有部分學(xué)生對于此概念容易混淆
?、趯τ谄椒讲罟胶屯耆椒焦?,有部分學(xué)生容易在應(yīng)用時(shí)混淆。
?、蹖τ谝辉畏匠糖蠼鈫栴},學(xué)生是初次接觸,對于方程的根的情況較難理解。
?、芤蚴椒纸獾木C合應(yīng)用上學(xué)生困難較大。
教法與學(xué)法是互相和統(tǒng)一的,正如新《數(shù)學(xué)課程標(biāo)準(zhǔn)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流 ”。就本節(jié)課而言,根據(jù)學(xué)生在學(xué)習(xí)中可能出現(xiàn)的困難,本節(jié)課在教學(xué)中主要采用“嘗試教學(xué)法”,以學(xué)生為主體,以親身體驗(yàn)為主線,教師在課堂中主要起到點(diǎn)撥和組織作用。利用嘗試教學(xué),讓學(xué)生主動(dòng)暴露思維過程,及時(shí)得到信息的反饋。
注:不管用什么教法,一節(jié)課應(yīng)該不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終對學(xué)生充滿情感、創(chuàng)造和諧的課堂氛圍,這是最重要的。
教學(xué)思想:整體思想和換元思想的體現(xiàn)。
二、教學(xué)過程:
本節(jié)課,一共設(shè)以下幾個(gè)環(huán)節(jié)
第一環(huán)節(jié),設(shè)置問題,復(fù)習(xí)回顧:
興趣是最好的老師,可以激發(fā)情感,喚起某種動(dòng)機(jī),從而引導(dǎo)學(xué)生成為學(xué)習(xí)的主人。初一學(xué)生在學(xué)習(xí)過程中,能積極地、主動(dòng)地去探討問題,這是學(xué)習(xí)成功地一個(gè)保障。
小小考場: 利用多媒體課件,依次出示
?。?)a2+a (2)a2–4; (3)a2+2a+1
說明:① 鞏固因式分解的兩種基本解法;
?、趶?fù)習(xí)鞏固兩個(gè)基本公式。
第二環(huán)節(jié), 嘗試練一練:(預(yù)設(shè)題)
?、?a2÷(-a ) ② (a2+a)÷a
③ (xy2—2xy)÷(y—2) ④ (9a2—4)÷(2—3a)
說明:1、本題前兩小題可請學(xué)生口答,后兩題請兩位同學(xué)上黑板板演其他同學(xué)自己先做,然后糾正黑板上的錯(cuò)誤。
2、通過預(yù)設(shè)題,層層遞進(jìn),為例題的理解作了個(gè)鋪墊,降低了本節(jié)課的難點(diǎn),可以讓學(xué)生自己理解書本例1。
3、請同學(xué)及時(shí)歸納用因式分解解決代數(shù)式的除法的方法和步驟:
?、賹γ恳粋€(gè)能因式分解的多項(xiàng)式進(jìn)行因式分解;
②約去相同的部分;
?、圩⒁夥枂栴},整體思想的應(yīng)用 。
4、安排這一過程的意圖是:通過嘗試教學(xué),引導(dǎo)學(xué)生主動(dòng)探求,造求學(xué)生自主學(xué)習(xí)的積極勢態(tài),通過一定的練習(xí),達(dá)到知覺水平上的運(yùn)用,加深學(xué)生對因式分解概念的理解,從而突出本節(jié)課的重點(diǎn)。
第三環(huán)節(jié),開動(dòng)小火車(填空)
1、(a2—4)÷(a+2)= 2、(x2+2xy+y2)÷(x+y)=
3、 (ab2+a2b)÷(a+b)= 4、(x2—49)÷(7—x)=
說明:本題先給學(xué)生3~5鐘思考,采用開動(dòng)小火車形式既訓(xùn)練了學(xué)生的解題速度又是對例1的及時(shí)鞏固。
第四環(huán)節(jié),合作探索,共同發(fā)現(xiàn):
以四人一組分小組討論書本的合作學(xué)習(xí)內(nèi)容,并請幾個(gè)小組代表發(fā)表見解,對于學(xué)生的發(fā)言應(yīng)盡量鼓勵(lì)。
分析:由AB=0可知A=0或B=0,利用此結(jié)論解方程(2x+3)(2x—3)=0可得2x+3=0或2x—3=0。
第五環(huán)節(jié),例題精析:
例、(2x-1)2=(x+2)2
分析:本例的教學(xué)是本節(jié)課的一個(gè)難點(diǎn),首先,給學(xué)生一定的時(shí)間思考討論,教師適當(dāng)引導(dǎo)學(xué)生思對于本題的求解教師可板書過程,并強(qiáng)調(diào)利用因式分解求解簡單的一元二次方程的步驟和注意點(diǎn):
?、偾蠼庠硎牵河葾B=0可知A=0或B=0。
?、谙纫祈?xiàng),注意移項(xiàng)后要變號,等號右邊為0。
?、劾谜w思想和換元思想因式分解。
?、茏⒁夥匠谈谋硎痉椒?。
第六環(huán)節(jié),比一比,賽一賽 ,看誰最棒:
1、(4mn3-6m3n)÷(2n2+3m2) 2、[(2a-1)2-(3a-1)2]÷(5a-2)
3、49x2-25=0 4、(3x-2)2=(1-5x)2
突破重點(diǎn),鞏固提高.
第七環(huán)節(jié),探索提高,提升自我:
1、 已知:| x + y + 1| +| xy - 3 | = 0 求代數(shù)式xy3 + x3y 的值。
2、把偶數(shù)按從小到大的順序排列,相鄰的兩個(gè)偶數(shù)的平方差(較大的減去較小的)一定是4的倍數(shù)嗎?是否可能有比4大的偶數(shù)因數(shù)?
說明:教師安排這一過程意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵(lì)學(xué)生勤于思考,各抒己見,培養(yǎng)學(xué)生的邏輯思維能力和表達(dá)、交流能力。
第八環(huán)節(jié), 知識整理,歸納小結(jié)。
這一部分可由學(xué)生自行小結(jié),盡可能說明本節(jié)課的收獲,教師可適當(dāng)補(bǔ)充。教師安排這一過程意圖是:由學(xué)生自行小結(jié),點(diǎn)燃學(xué)生主題意識的再度爆發(fā)。同時(shí),學(xué)生的知識學(xué)習(xí)得到了自我評價(jià)和鞏固,成為本節(jié)課的最后一個(gè)亮點(diǎn)。
第九環(huán)節(jié),作業(yè)布置:
1、書本作業(yè)題,作業(yè)本。
2、興趣題:手工課上,老師又給同學(xué)們發(fā)了3張正方形紙片,3張長方形紙片,請你將它們拼成一個(gè)長方形,并運(yùn)用面積之間的關(guān)系,將多項(xiàng)式2a2+3ab+b2 因式分解
教師意圖:讓學(xué)生鞏固所學(xué)內(nèi)容并進(jìn)行自我檢測與評價(jià),考慮到學(xué)生基礎(chǔ)的差異性,作業(yè)進(jìn)行分層次要求。興趣題可滿足學(xué)有余力的學(xué)生的求知欲望,提高他們對因式分解的技能和技巧。
三、板書設(shè)計(jì):板書主要分課題、投影區(qū)和注意要點(diǎn)區(qū)。
四、關(guān)于教學(xué)設(shè)計(jì):
由于本節(jié)課的重要性,對于本節(jié)課的設(shè)計(jì)主要強(qiáng)調(diào)“雙基”,使學(xué)生的認(rèn)知水平在原有的知識基礎(chǔ)上有所提高,整堂課應(yīng)以學(xué)生為主體,對于學(xué)生出現(xiàn)的錯(cuò)誤,教師應(yīng)給予正確的引導(dǎo),并積極鼓勵(lì)學(xué)生在課堂中體現(xiàn)自我,在數(shù)學(xué)學(xué)習(xí)中體驗(yàn)快樂。
《因式分解》說課稿3
各位專家、各位老師:
大家好!
今天我說課的內(nèi)容是人教版七年級數(shù)學(xué)下冊第六章《因式分解》第一節(jié)課的內(nèi)容·
一、說教材
(一)教材的地位與作用
因式分解是代數(shù)式的一種重要恒等變形·它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用,就本節(jié)課而言,著重闡述了兩個(gè)方面,一是因式分解的概念,二是與整式乘法的相互關(guān)系·它是繼整式乘法的基礎(chǔ)上來討論因式分解概念,繼而,通過探究與整式乘法的關(guān)系,來尋求因式分解的原理·這一思想實(shí)質(zhì)貫穿后繼學(xué)習(xí)的各種因式分解方法·通過本節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)因式分解作好了充分的準(zhǔn)備·因此,它起到了承上啟下的作用·
(二)教學(xué)目標(biāo)
根據(jù)新課程標(biāo)準(zhǔn)以及因式分解這一節(jié)課的'內(nèi)容,對于掌握各種因式分解的方法,乃至整個(gè)代數(shù)教學(xué)中的地位和作用,我制定了以下教學(xué)目標(biāo):
1·知識目標(biāo):
理解因式分解的概念;掌握從整式乘法得出因式分解的方法·
2·能力目標(biāo):
培養(yǎng)分工協(xié)作及合作能力,鍛煉學(xué)生的語言表達(dá)及用數(shù)學(xué)語言的能力;培養(yǎng)學(xué)生觀察、分析、歸納的能力,并向?qū)W生滲透對比、類比的數(shù)學(xué)思想方法·
3·情感目標(biāo):
培養(yǎng)學(xué)生積極主動(dòng)參與的意識,使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣;體會事物之間互相轉(zhuǎn)化的辨證思想,從而初步接受對立統(tǒng)一觀點(diǎn)·
(三)教學(xué)重點(diǎn)與難點(diǎn)·
本節(jié)課理解因式分解的概念的本質(zhì)屬性是學(xué)習(xí)整章因式分解的關(guān)鍵,而學(xué)生由乘法到因式分解的變形是一個(gè)逆向思維·在前一章整式乘法的較長時(shí)間的學(xué)習(xí),造成思維定勢,學(xué)生容易產(chǎn)生“倒攝抑制”作用,阻礙學(xué)生新概念的形成·因此我將本課的學(xué)習(xí)重點(diǎn)、難點(diǎn)確定為:
教學(xué)的重點(diǎn):因式分解的概念
教學(xué)的難點(diǎn):認(rèn)識因式分解與整式乘法的關(guān)系,并能意識到可以運(yùn)用整式乘法的一系列法則來解決因式分解的各種問題·
二、說學(xué)情
1·學(xué)生已經(jīng)學(xué)習(xí)整式的乘法、乘法公式以及整式的除法的學(xué)習(xí)·
2·八年級的學(xué)生接受能力、思維能力、自我控制能力都有很大變化和提高,自學(xué)能力較強(qiáng),通過類比學(xué)習(xí)加快知識的學(xué)習(xí)·
三、說教法學(xué)法
教發(fā)與學(xué)法是互相和統(tǒng)一的,正如新《數(shù)學(xué)課程標(biāo)準(zhǔn)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流 ”·就本節(jié)課而言,在教法上不妨利用對比教學(xué),讓學(xué)生體驗(yàn)因式分解概念產(chǎn)生的過程;利用類比教法、講練結(jié)合的教學(xué)方法,以概念的形成和同化相結(jié)合,促進(jìn)學(xué)生對因式分解概念的理解;利用嘗試教學(xué),讓學(xué)生主動(dòng)暴露思維過程,及時(shí)得到信息的反饋·不管用什么教法,一節(jié)課應(yīng)該不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終對學(xué)生充滿情感、創(chuàng)造和諧的課堂氛圍,這是最重要的·
四、教學(xué)過程·
本節(jié)課教學(xué)過程分以下六個(gè)環(huán)節(jié):
創(chuàng)設(shè)情景,引出新知; 觀察分析,探究新知;
師生互動(dòng),運(yùn)用新知; 強(qiáng)化訓(xùn)練,掌握新知;
整理知識,形成結(jié)構(gòu); 布置作業(yè),鞏固提高·
具體過程設(shè)計(jì)如下:
第一環(huán)節(jié):創(chuàng)設(shè)情景,引出新知
我先出示幾個(gè)整式乘法的練習(xí),讓學(xué)生做·教師巡視·
學(xué)生完成習(xí),一是復(fù)習(xí)整式的乘法,激活學(xué)生原有整式乘法的認(rèn)知結(jié)構(gòu),滿足“溫故而知新”的后,教師引導(dǎo):把上述等式逆過來看一看還成立嗎?
安排這樣的練教學(xué)原理·二是為本節(jié)課目標(biāo)的達(dá)成作好鋪墊·在此基礎(chǔ)上引出課題——因式分解·
第二環(huán)節(jié):觀察分析,探究新知
全班兩個(gè)組,比賽看哪一組算的快,當(dāng)a=101,b=99時(shí),第一組求a2—b2的值,第二組求(a+b)(a—b)·教師巡視,代表性地抽取兩名學(xué)生板演,給出兩種解法·
安排這一過程是想利用對比分析,讓學(xué)生體會,把a(bǔ)2—b2化為整式積的形式,會給計(jì)算帶來簡便,順應(yīng)了因式分解概念的引出·
問題是數(shù)學(xué)的心臟,而一個(gè)好的問題的提出,將會使學(xué)生產(chǎn)生求知欲,引發(fā)教學(xué)高潮,是學(xué)生知識及能力獲得發(fā)展的有效動(dòng)力·故在教因式分解概念時(shí),我設(shè)計(jì)以下兩個(gè)問題:
(1) 你能嘗試把a(bǔ)2—b2化成幾個(gè)整式的積的形式嗎?并與小學(xué)所學(xué)的因數(shù)分解作比較·
(2) 因式分解與整式乘法有什么關(guān)系?
讓學(xué)生分四人小組討論·歸納因式分解的定義·
一個(gè)多項(xiàng)式→幾個(gè)整式+積→因式分解
我特設(shè)三個(gè)例題,這幾個(gè)題目完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,使學(xué)生真正成為學(xué)習(xí)的主體·通過例1、例2羅列一些似是而非、容易產(chǎn)生錯(cuò)誤的對象讓學(xué)生辨析,讓學(xué)生進(jìn)一步體會整式乘法與因式分解的互逆關(guān)系·促使他們認(rèn)識概念的本質(zhì)、確定概念的外延,從而形成良好的認(rèn)知結(jié)構(gòu)·通過例3體會用分解因式解決相關(guān)問題的簡捷性·
第三環(huán)節(jié):強(qiáng)化訓(xùn)練,掌握新知
數(shù)學(xué)家華羅庚先生說過:“學(xué)數(shù)學(xué)而不練,猶如入寶山而空返”·適當(dāng)?shù)撵柟绦裕瑧?yīng)用性練習(xí)是學(xué)習(xí)新知識,掌握新知識所必不可少的·為了促進(jìn)學(xué)生對新知識的理解和掌握,我及時(shí)安排學(xué)生完成兩個(gè)練習(xí)·通過這兩個(gè)練習(xí)讓學(xué)生學(xué)會辨析因式分解這種變形·使學(xué)生進(jìn)一步理解和掌握因式分解,為下一節(jié)提取公因式法進(jìn)行因式分解打基礎(chǔ);同時(shí)又訓(xùn)練、培養(yǎng)和發(fā)展學(xué)生的基本技能和能力·
第四環(huán)節(jié):整理知識,形成結(jié)構(gòu)·
最后我設(shè)計(jì)了一個(gè)表格的形式進(jìn)行歸納小結(jié)·使學(xué)生對知識的掌握上升為一種能力,并納入已有的認(rèn)知結(jié)構(gòu),同時(shí)也培養(yǎng)了學(xué)生的概括提煉能力·
第五環(huán)節(jié):布置作業(yè),鞏固提高·
在作業(yè)上我布置了看書、作業(yè)本、思考題·這樣既有利于學(xué)生鞏固所學(xué)內(nèi)容,又讓不同層次的學(xué)生得到相應(yīng)的發(fā)展·
五、說板書
在本節(jié)課中我將采用提綱式的板書設(shè)計(jì),因?yàn)樘峋V式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對教材內(nèi)容和知識體系的理解和記憶·
《因式分解》說課稿4
一、說教材
1、關(guān)于地位與作用。
本說課的內(nèi)容是數(shù)學(xué)第二冊7.1《因式分解》。因式分解不言而喻,就整個(gè)數(shù)學(xué)而言,它是打開整個(gè)代數(shù)寶庫的一把鑰匙。就本節(jié)課而言,著重闡述了兩個(gè)方面,一是因式分解的概念,二是與整式乘法的相互關(guān)系。它是繼乘法的基礎(chǔ)上來討論因式分解概念,繼而,通過探究與整式乘法的關(guān)系,來尋求因式分解的原理。這一思想實(shí)質(zhì)貫穿后繼學(xué)習(xí)的各種因式分解方法。通過這節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)因式分解作好了充分的準(zhǔn)備。因此,它起到了承上啟下的作用。
2、關(guān)于教學(xué)目標(biāo)。
根據(jù)因式分解一節(jié)課的內(nèi)容,對于掌握各種因式分解的方法,乃至整個(gè)代數(shù)教學(xué)中的地位和作用,特制定如下教學(xué)目標(biāo):
?。ㄒ唬┲R與技能目標(biāo):
?、倭私庖蚴椒纸獾谋匾?;
?、谏羁汤斫庖蚴椒纸獾母拍?;
?、壅莆諒恼匠朔ǖ贸鲆蚴椒纸獾姆椒?。
?。ǘw驗(yàn)性目標(biāo):
?、俑惺苷匠朔ㄅc因式分解矛盾的對立統(tǒng)一觀點(diǎn);
②體驗(yàn)由和差到積的形成過程,初步獲得因式分解的經(jīng)驗(yàn)。
3、關(guān)于教學(xué)重點(diǎn)與難點(diǎn)。
重點(diǎn)是因式分解的概念。理由是理解因式分解的概念的本質(zhì)屬性是學(xué)習(xí)整章因式分解的靈魂,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,以及它們之間的關(guān)系進(jìn)行因式分解的思想。理由是學(xué)生由乘法到因式分解的變形是一個(gè)逆向思維。在前一章整式乘法的較長時(shí)間的學(xué)習(xí),造成思維定勢,學(xué)生容易產(chǎn)生“倒攝抑制”作用,阻礙學(xué)生新概念的形成。
4、關(guān)于教法與學(xué)法。
教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法。因此,我們應(yīng)該重點(diǎn)闡述教法。一節(jié)課不能是單一的教法,教無定法。但遵循的原則——啟發(fā)性原則是永恒的。在教師的啟發(fā)下,讓學(xué)生成為行為主體。正如新《數(shù)學(xué)課程標(biāo)準(zhǔn)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流”。在上述思想為出發(fā)點(diǎn),就本節(jié)課而言,不妨利用對比教學(xué),讓學(xué)生體驗(yàn)因式分解的必要性;利用類比教學(xué),以概念的形曾成和同化相結(jié)合,促進(jìn)學(xué)生對因式分解概念的理解;利用嘗試教學(xué),讓學(xué)生主動(dòng)暴露思維過程,及時(shí)得到信息的反饋。教師
充分依照學(xué)生的認(rèn)知心理,不斷創(chuàng)設(shè)“最近發(fā)展區(qū)”,造就認(rèn)知沖突,促進(jìn)學(xué)生不斷發(fā)現(xiàn)、不斷達(dá)到知識的內(nèi)化。
不管用什么教法,一節(jié)課應(yīng)該不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終對學(xué)生充滿情感創(chuàng)造和諧的課堂氛圍,這是最重要的。二、說過程。
第一環(huán)節(jié),導(dǎo)入階段。
教師出示下列各題,讓學(xué)生練習(xí)。
計(jì)算:(1)(a+b)^2;(2)(5a+2b)(5a–2b);(3)m(a+b)。
學(xué)生完成后,教師引導(dǎo):把上述等式逆過來看,即
(1)a^2+2ab+b^2=(a+b)^2;(2)25a^2–4b^2=(5a+2b)(5a–2b);(3)ma+mb=m(a+b)。
成立嗎?
安排這一過程的意圖是:一是復(fù)習(xí)整式的乘法,激活學(xué)生原有整式乘法的認(rèn)知結(jié)構(gòu),促使新舊認(rèn)知結(jié)構(gòu)的聯(lián)結(jié),滿足“溫故而知新”的教學(xué)原理。二是為本節(jié)課目標(biāo)的達(dá)成作好墊鋪。在此基礎(chǔ)上引出課題——因式分解。
第二環(huán)節(jié),新課階段。
1、對比練習(xí)。讓學(xué)生練習(xí):
當(dāng)a=101,b=99時(shí),求a2—b2的值。教師巡視,并代表性地抽取兩名學(xué)生板演,給出兩種解法。
教師安排這一過程的意圖是:利用對比分析,讓學(xué)生體會,把a(bǔ)2—b2化為整式積的形式,給計(jì)算帶來的優(yōu)越性,順應(yīng)了因式分解概念的引出。
2、類比練習(xí)。讓學(xué)生練習(xí):
分解下列三個(gè)數(shù)的質(zhì)因數(shù)(1)42;(2)56;(3)11。
在此,教師幫助歸納:42與56兩個(gè)數(shù)可以化為幾個(gè)整數(shù)的積,叫做因數(shù)分解。本身是質(zhì)數(shù)的數(shù)就不能再分解。同時(shí)設(shè)疑,對于一個(gè)多項(xiàng)式能化為幾個(gè)整式的積的形式嗎?在師生互動(dòng)的基礎(chǔ)上,要求學(xué)生翻開課本閱讀課本因式分解定義。
3、創(chuàng)設(shè)問題情景。
同學(xué)們,我們不能迷信課本,課本的因式分解定義有毛病,請大家逐字研讀,找出問題。讓學(xué)生分四人小組討論。(事實(shí)上正確)提問學(xué)生討論結(jié)果,課本定義是正確的。
板書:
一個(gè)多項(xiàng)式→幾個(gè)整式+積→因式分解
師生歸納要注意的問題:
?。?)因式分解是對多項(xiàng)式而言的一種變形;
?。?)因式分解的結(jié)果仍是整式;
(3)因式分解的結(jié)果必是一個(gè)積;
(4)因式分解與整式乘法正好相反。
板書:
4、學(xué)生練習(xí)課本p152練習(xí)第1、2兩題。
教師安排這一過程意圖是:通過對比教學(xué),提高學(xué)生對因式分解的知覺水平;通過具體數(shù)的分解這一類比教學(xué),產(chǎn)生正遷移,認(rèn)識新概,符合學(xué)生概念形成的認(rèn)知規(guī)律;通過故設(shè)偏差法,制造認(rèn)知沖突,讓學(xué)生咬文嚼字因式分解概念,引導(dǎo)學(xué)生主動(dòng)探求,造求學(xué)生自主學(xué)習(xí)的積極勢態(tài),促進(jìn)學(xué)生對概念本質(zhì)屬性的理解;讓學(xué)生用正反習(xí)題的練習(xí),達(dá)到知覺水平上的運(yùn)用,促使對因式分解概念的理解。從而使本節(jié)課達(dá)到高潮。
第三環(huán)節(jié),嘗試練習(xí),信息反饋。
讓學(xué)生嘗試練習(xí):課本p152第3題,并引導(dǎo)中下學(xué)生看p152例題,教師及時(shí)點(diǎn)撥講評。
教師安排這一過程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到正強(qiáng)化。
第四環(huán)節(jié),小結(jié)階段。
這是最后的一個(gè)環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?
學(xué)生展開討論,得到下列結(jié)論:
A、左邊是乘法,而右邊是差,不是積;
B、左右兩邊都不是整式;
C、從右邊到左邊是利用了因式分解的變形方法進(jìn)行分解。
由此可知,上式不是因式分解。進(jìn)而,教師呈現(xiàn)因式分解定義。
教師安排這一過程意圖是:學(xué)生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開始分散。教師如果把定義及要注意的問題進(jìn)行小結(jié)后直接拋給學(xué)生,只能是是似而非。通過讓學(xué)生練習(xí),在練習(xí)中歸納,再一次點(diǎn)燃學(xué)生即將沉睡而去的心理興奮點(diǎn),點(diǎn)燃學(xué)生主題意識的再度爆發(fā)。同時(shí),學(xué)生的知識學(xué)習(xí)得到了自我評價(jià)和鞏固,成為本節(jié)課的最后一個(gè)亮點(diǎn)。
《因式分解》說課稿5
1問好
尊敬的各位評委老師,大家好?。ň瞎┪沂墙裉斓?號考生,我說課的題目是《用因式分解法求解一元二次程》,下面開始我的說課。
2總括語
為了處理好教與學(xué)的關(guān)系,突出數(shù)學(xué)課標(biāo)的教學(xué)理念,在講授過程中我既要做到精講精練,又要放手引導(dǎo)學(xué)生參與嘗試和討論,展開思維活動(dòng)。因此,本節(jié)課力爭促進(jìn)學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變,由被動(dòng)聽講式學(xué)習(xí)轉(zhuǎn)變?yōu)榉e極主動(dòng)地探索發(fā)現(xiàn)式學(xué)習(xí)。下面,我主要從教材分析、教學(xué)目標(biāo)、學(xué)情分析、教法學(xué)法、教學(xué)過程和板書設(shè)計(jì)這六個(gè)方面展開我的說課。
3教材分析
教材是進(jìn)行教學(xué)評判的依據(jù),是學(xué)生獲取知識的重要來源,所以,對教材的分析尤為重要?!队靡蚴椒纸夥ㄇ蠼庖辉畏匠獭愤x自北師大版九年級上冊第二章第四節(jié),本節(jié)課的主要內(nèi)容是了解因式分解法的解題步驟,會用因式分解法解一元二次方程,在此之前學(xué)生已經(jīng)學(xué)習(xí)了整式乘法以及因式分解,為本節(jié)課學(xué)習(xí)解一元二次方程做了鋪墊,也為以后學(xué)習(xí)二次函數(shù)奠定基礎(chǔ)。
4教學(xué)目標(biāo)
為了與學(xué)生的認(rèn)知基礎(chǔ)相適應(yīng),更好展現(xiàn)知識形成和發(fā)展的過程,我確定本節(jié)課的三維教學(xué)目標(biāo)如下:
一、知識與技能目標(biāo):學(xué)生能夠了解因式分解法的解題步驟,會用因式分解法解一元二次方程,根據(jù)方程特征靈活選擇方程的解法。
二、過程與方法目標(biāo):學(xué)生逐漸學(xué)會在具體情景中從數(shù)學(xué)的角度發(fā)現(xiàn)問題和提出問題,提高綜合運(yùn)用數(shù)學(xué)知識和方法解決實(shí)際問題的能力。
三、情感態(tài)度與價(jià)值觀目標(biāo):通過小組合作積極參與教學(xué)活動(dòng),學(xué)生可以樹立對數(shù)學(xué)的好奇心和求知欲,養(yǎng)成敢于質(zhì)疑、勇于創(chuàng)新、合作交流的學(xué)習(xí)習(xí)慣。
基于以上對教材和教學(xué)目標(biāo)的分析,本節(jié)課的教學(xué)重點(diǎn)是了解因式分解法的解題步驟,會用因式分解法解一元二次方程,教學(xué)難點(diǎn)是理解因式分解法解一元二次方程的基本思想。
5學(xué)情分析
為了保證教學(xué)有針對性,教師不僅要對教材進(jìn)行分析,更要對學(xué)生的情況有清晰明了的掌握,這樣才能做到因材施教。九年級學(xué)生以抽象邏輯思維為主,他們樂于參與課堂,更渴望得到教師的關(guān)注,有強(qiáng)烈的好勝心,因此我會有組織、有目的、有針對性的引導(dǎo)學(xué)生參與到學(xué)習(xí)活動(dòng)中,幫助學(xué)生真正成為學(xué)習(xí)的主人。
6教法學(xué)法
數(shù)學(xué)是一門發(fā)展思維的重要學(xué)科,為了更好貫徹?cái)?shù)學(xué)新課標(biāo)的要求,我采用小組合作討論法,并輔之以問答和講授的教學(xué)方法。在指導(dǎo)學(xué)生學(xué)習(xí)方法和培養(yǎng)學(xué)習(xí)能力方面,我將引導(dǎo)學(xué)生采用自主學(xué)習(xí)和合作探究的學(xué)法。這種教學(xué)理念緊隨新課改理念也反映了時(shí)代精神。
7教學(xué)過程
以上所有的準(zhǔn)備都是為了課堂的完美呈現(xiàn),結(jié)合學(xué)生的認(rèn)知特點(diǎn),我將設(shè)計(jì)如下教學(xué)過程:
導(dǎo)入
精彩的導(dǎo)入可以激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),培養(yǎng)學(xué)習(xí)興趣,從而達(dá)到事半功倍的效果,因此我將采用如下方式進(jìn)行導(dǎo)入:同學(xué)們請看大屏幕,王莊村在測量土地時(shí),發(fā)現(xiàn)了一塊正方形的土地和一塊矩形的土地,矩形土地的寬和正方形的邊長相等,矩形土地的長為80m,工作人員說:“正方形土地的面積是矩形面積的一半。”誰能幫助工作人員計(jì)算一下正方形土地的面積嗎?我看到同學(xué)們臉上露出了疑惑的表情,帶著這個(gè)問題進(jìn)入我們今天的課堂《用因式分解法求解一元二次方程》。這樣通過生活實(shí)際問題引入,可以激發(fā)學(xué)生好奇探索、主動(dòng)學(xué)習(xí)的欲望。
新授
接下來進(jìn)入新授環(huán)節(jié),此環(huán)節(jié)我設(shè)計(jì)如下活動(dòng):
我會先帶領(lǐng)同學(xué)們根據(jù)題意列式,同學(xué)們在之前學(xué)習(xí)的基礎(chǔ)之上,不難得出a=80a,但是對于解決這個(gè)問題略有難度,因此我會組織同學(xué)們采用小組討論的方式,給同學(xué)們5分鐘時(shí)間,鼓勵(lì)同學(xué)們采用多種方法就解決問題。討論過程中,我會走下講臺,參與同學(xué)們的討論。討論結(jié)束后,有的小組用公式法得到答案;有的小組用的是等式的性質(zhì),但是,考慮不全面,所以錯(cuò)誤;還有小組是將方程轉(zhuǎn)化成兩個(gè)因式乘積的形式a(a-80)=0,結(jié)果正確。在此活動(dòng)中引導(dǎo)學(xué)生共同交流,鍛煉合作探究能力和思維能力。
根據(jù)上述結(jié)論,我會拋出問題:該小組的做題思路是什么?他們的思路用到我們以前學(xué)的什么知識點(diǎn)?組織小組繼續(xù)合作討論并進(jìn)行比較歸納,經(jīng)過激烈討論之后找小組代表總結(jié)可得:基本思路是:以b代替a-80,若ab=0,則a=0或b=0。當(dāng)一元二次方程的一邊為0,而另一邊易于分解成兩個(gè)一次因式的乘積時(shí),我們可以用因式分解的方法求解。因式分解法關(guān)鍵是熟練掌握因式分解的知識,在此過程充分體現(xiàn)了學(xué)生主體,教師主導(dǎo)的理念,有效突破重點(diǎn),增強(qiáng)學(xué)習(xí)興趣。
為了學(xué)生能夠進(jìn)一步掌握因式分解法,我會在多媒體上出示如下方程:5X=4X,并進(jìn)行演示具體解題步驟,引導(dǎo)學(xué)生歸納總結(jié)出因式分解法的基本步驟為:一移-----方程的右邊等于0;二分-----方程的左邊因式分解;三化-----方程化為兩個(gè)一元一次方程;四解-----寫出方程兩個(gè)解。這與配方法類似,都是將一元二次方程轉(zhuǎn)化成兩個(gè)一元一次方程求解,這個(gè)環(huán)節(jié)可以進(jìn)一步提高學(xué)生分析問題和歸納總結(jié)的能力。在對因式分解法了解之后,結(jié)合前幾種方法我會在黑板上出幾道題目,找學(xué)生上黑板練習(xí),以便于學(xué)生能夠更好的理解和運(yùn)用因式分解法。
鞏固練習(xí)是必不可少的環(huán)節(jié),為了鼓勵(lì)學(xué)生能夠?qū)⑺鶎W(xué)知識更好的應(yīng)用到實(shí)際生活中去,我會引導(dǎo)學(xué)生回顧課堂導(dǎo)入時(shí)的問題并進(jìn)行解決,這樣設(shè)計(jì)既檢查了新知學(xué)習(xí)情況,也與實(shí)際聯(lián)系起來,幫助學(xué)生認(rèn)識到數(shù)學(xué)就在自己身邊。
小結(jié)
根據(jù)艾賓浩斯遺忘曲線規(guī)律可知,及時(shí)復(fù)習(xí)效果更好,在課堂即將結(jié)束時(shí)我將以提問的方式引導(dǎo)學(xué)生對本節(jié)課的重難點(diǎn)加以總結(jié),使知識系統(tǒng)化、概括化。
作業(yè)
最后留出本節(jié)課的作業(yè):回想一下我們學(xué)習(xí)了哪些解一元二次方程的方法?每種方法的適用類型是什么?請以列表的方式進(jìn)行對比,在這個(gè)數(shù)學(xué)活動(dòng)中,學(xué)生是完全自由的學(xué)習(xí)個(gè)體。
8板書設(shè)計(jì)
板書是一堂課的精華部分,好的板書起到畫龍點(diǎn)睛的作用。以下是我的板書設(shè)計(jì):我將在黑板正上方寫本節(jié)課的題目,主板書以思維導(dǎo)圖的方式呈現(xiàn),系統(tǒng)展示因式分解法求解一元二次方程的基本步驟:一移、二分、三化、四解。這樣的板書設(shè)計(jì)簡單明了、系統(tǒng)直觀,能夠幫助學(xué)生對本節(jié)課有一個(gè)更深刻的掌握。
以上是我全部的說課內(nèi)容,謝謝各位評委老師!
鐵樹老師網(wǎng)絡(luò)面試輔導(dǎo),喜馬拉雅app--主播--教師面試大雜燴
圖文搜集自網(wǎng)絡(luò),如有侵權(quán)請聯(lián)系刪除
《因式分解》說課稿6
一、說教材
1、說教材的地位與作用。
我今天說課的內(nèi)容是浙教版數(shù)學(xué)七年級下冊第六章第一節(jié)內(nèi)容《因式分解》。因式分解就整個(gè)數(shù)學(xué)而言,它是打開整個(gè)代數(shù)寶庫的一把鑰匙。就本節(jié)課而言,著重闡述了兩個(gè)方面,一是因式分解的概念,二是與整式乘法的相互關(guān)系。它是在學(xué)生掌握了因數(shù)分解、整式乘法的基礎(chǔ)上來討論因式分解概念,通過這節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)分式、解方程及代數(shù)式的恒等變形作鋪墊。因此,它起到了承上啟下的作用。
二、說目標(biāo)
1、教學(xué)目標(biāo)。
《新課標(biāo)》指出“初中數(shù)學(xué)的教學(xué),不僅要使學(xué)生學(xué)好基礎(chǔ)知識,發(fā)展能力,還要注意培養(yǎng)學(xué)生初步的辯證唯物主義觀點(diǎn)。”因此,根據(jù)本節(jié)內(nèi)容所處的地位,我定如下教學(xué)目標(biāo):
知識目標(biāo):理解因式分解的概念和意義,掌握因式分解與整式乘法之間的關(guān)系。
能力目標(biāo):①經(jīng)歷從分解因數(shù)到分解因式的類比過程,培養(yǎng)學(xué)生的觀察、發(fā)現(xiàn)、類比、化歸、概括等能力;
?、谕ㄟ^對因式分解與整式乘法的關(guān)系的理解,克服學(xué)生的思維定勢,培養(yǎng)他們的逆向思維能力;
情感目標(biāo):培養(yǎng)學(xué)生樂于探究,合作的習(xí)慣,體驗(yàn)探索成功,感受到成功的樂趣。
2、教重點(diǎn)與難點(diǎn)。
重點(diǎn)是因式分解的概念。理由是理解因式分解的概念的本質(zhì)屬性是學(xué)習(xí)整章因式分解的靈魂。
難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,理由是學(xué)生由整式乘法到因式分解的變形是一個(gè)逆向思維。在前面學(xué)了較長時(shí)間的整式乘法,造成思維定勢,學(xué)生容易產(chǎn)生“倒攝抑制”作用,阻礙學(xué)生新概念的形成。
三、說教法
1、教法分析
針對初一學(xué)生的年齡特點(diǎn)和心理特征,以及他們的知識水平,我采用啟發(fā)式、發(fā)現(xiàn)法等教學(xué)方法,培養(yǎng)學(xué)生分析問題,解決問題的能力。同時(shí)遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原則。
2、學(xué)法指導(dǎo)
在教師的啟發(fā)下,讓學(xué)生成為行為主體。正如《新課標(biāo)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流”。
3、教學(xué)手段
采用多媒體輔助教學(xué),增加課堂容量,提高教學(xué)效果。
四、說教學(xué)過程
本節(jié)課教學(xué)過程分以下六個(gè)環(huán)節(jié):
創(chuàng)設(shè)情景,引出新知;觀察分析,探究新知;
師生互動(dòng),運(yùn)用新知;強(qiáng)化訓(xùn)練,掌握新知;
整理知識,形成結(jié)構(gòu);布置作業(yè),鞏固提高。
具體過程設(shè)計(jì)如下:
第一環(huán)節(jié):創(chuàng)設(shè)情景,引出新知
1、我先出示幾個(gè)整式乘法的練習(xí),讓學(xué)生做。教師巡視。
學(xué)生完成后,教師引導(dǎo):把上述等式逆過來看一看還成立嗎?
△設(shè)計(jì)意圖:安排以上練習(xí):一是復(fù)習(xí)整式的乘法,激活學(xué)生原有整式乘法的認(rèn)知結(jié)構(gòu),滿足“溫故而知新”的教學(xué)原理。二是為本節(jié)課目標(biāo)的達(dá)成作好鋪墊。在此基礎(chǔ)上引出課題——因式分解。
第二環(huán)節(jié):觀察分析,探究新知
2、再讓學(xué)生練習(xí):當(dāng)a=101,b=99時(shí),求a2-b2的值.教師巡視,并代表性地抽取兩名學(xué)生板演,給出兩種解法。
△設(shè)計(jì)意圖:安排這一過程是想利用對比分析,讓學(xué)生體會,把a(bǔ)2-b2化為整式積的形式,會給計(jì)算帶來簡便,順應(yīng)了因式分解概念的引出。
3、問題是數(shù)學(xué)的心臟,而一個(gè)好的問題的提出,將會使學(xué)生產(chǎn)生求知欲,引發(fā)教學(xué)高潮,是學(xué)生知識及能力獲得發(fā)展的有效動(dòng)力。故在教因式分解概念時(shí),我設(shè)計(jì)以下兩個(gè)問題:
?。?)你能嘗試把a(bǔ)2-b2化成幾個(gè)整式的積的形式嗎?并與小學(xué)所學(xué)的因數(shù)分解作比較。
?。?)因式分解與整式乘法有什么關(guān)系?
讓學(xué)生分四人小組討論。歸納因式分解的定義。
一個(gè)多項(xiàng)式→幾個(gè)整式+積→因式分解
4、教師板書板書:
師生歸納要注意的問題:
?。?)因式分解是對多項(xiàng)式而言的一種變形;(2)因式分解的結(jié)果仍是整式;
?。?)因式分解的結(jié)果必是一個(gè)積;(4)因式分解與整式乘法正好相反。
△設(shè)計(jì)意圖:通過類比,讓學(xué)生進(jìn)一步理解因式分解是整式乘法的逆運(yùn)算,培養(yǎng)學(xué)生逆向思維。
第三環(huán)節(jié):師生互動(dòng),運(yùn)用新知為了讓學(xué)生進(jìn)一步理解因式分解是整式乘法的逆運(yùn)算,培養(yǎng)學(xué)生逆向思維。
我特設(shè)三個(gè)例題,這幾個(gè)題目完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,使學(xué)生真正成為學(xué)習(xí)的主體。
△設(shè)計(jì)意圖:通過例1、例2羅列一些似是而非、容易產(chǎn)生錯(cuò)誤的對象讓學(xué)生辨析,讓學(xué)生進(jìn)一步體會整式乘法與因式分解的互逆關(guān)系。促使他們認(rèn)識概念的本質(zhì)、確定概念的外延,從而形成良好的認(rèn)知結(jié)構(gòu)。通過例3體會用分解因式解決相關(guān)問題的簡捷性。
第四環(huán)節(jié):強(qiáng)化訓(xùn)練,掌握新知
數(shù)學(xué)家 華羅庚 先生說過:“學(xué)數(shù)學(xué)而不練,猶如入寶山而空返”。適當(dāng)?shù)撵柟绦?,?yīng)用性練習(xí)是學(xué)習(xí)新知識,掌握新知識所必不可少的。為了促進(jìn)學(xué)生對新知識的理解和掌握,我及時(shí)安排學(xué)生完成兩個(gè)練習(xí)。
△設(shè)計(jì)意圖:通過這兩個(gè)練習(xí)讓學(xué)生學(xué)會辨析因式分解這種變形。使學(xué)生進(jìn)一步理解和掌握因式分解,為下一節(jié)提取公因式法進(jìn)行因式分解打基礎(chǔ);同時(shí)又訓(xùn)練、培養(yǎng)和發(fā)展學(xué)生的基本技能和能力。
第五環(huán)節(jié):整理知識,形成結(jié)構(gòu)。
最后我設(shè)計(jì)了一個(gè)表格的形式進(jìn)行歸納小結(jié)。使學(xué)生對知識的掌握上升為一種能力,并納入已有的認(rèn)知結(jié)構(gòu),同時(shí)也培養(yǎng)了學(xué)生的概括提煉能力。
第六環(huán)節(jié):布置作業(yè),鞏固提高。
在作業(yè)上我布置了看書、作業(yè)本、思考題。這樣既有利于學(xué)生鞏固所學(xué)內(nèi)容,又讓不同層次的學(xué)生得到相應(yīng)的發(fā)展。
五、說板書
《因式分解》說課稿7
各位評委老師:
上午好!我是最后一號,非常不好意思,因?yàn)槲易尨蠹彝纯喽鋵?shí)的等到現(xiàn)在。我今天說課的課題是因式分解(板書課題4.1因式分解)。我將主要從教材分析,教法分析,學(xué)法指導(dǎo),教學(xué)過程及補(bǔ)充說明等五個(gè)方面來具體闡述這節(jié)課。下面開始我的說課。
一、教材分析
?。ㄒ唬┙滩牡牡匚慌c作用
本節(jié)課是初中數(shù)學(xué)人教北師大版八年級下冊第四章第一節(jié)的內(nèi)容。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了整式乘法的相關(guān)知識,這為過渡到本節(jié)的學(xué)習(xí)起了鋪墊作用。同時(shí)本節(jié)課也為后續(xù)知識一元二次方程求解方法的學(xué)習(xí)奠定一定的作用,因此在教材中本節(jié)課起著承上啟下的過渡作用,而且本節(jié)課鑲嵌著深刻的數(shù)形結(jié)合思想、類比思想,有利于學(xué)生思維的深化。
(二)教學(xué)目標(biāo)
根據(jù)以上對教材的認(rèn)識分析和學(xué)生的實(shí)際情況,結(jié)合數(shù)學(xué)新課標(biāo),我制定如下教學(xué)目標(biāo):
1、知識與技能
(1)了解因式分解的意義,理解因式分解的概念。
?。?)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系。
?。?)培養(yǎng)和提高學(xué)生分析、解決問題的能力
2、過程與方法
通過因式分解的學(xué)習(xí),讓學(xué)生經(jīng)歷因式分解概念的探索過程,感知、了解數(shù)學(xué)概念形成的方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,分析問題,解決問題的能力。
3、情感態(tài)度與價(jià)值觀
鼓勵(lì)學(xué)生積極主動(dòng)的參與教學(xué)的整個(gè)過程,激發(fā)其求知的欲望;讓學(xué)生體會數(shù)形結(jié)合的數(shù)學(xué)思想;領(lǐng)會數(shù)學(xué)的應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于質(zhì)疑的優(yōu)良品質(zhì)。
?。ㄈ┙虒W(xué)重點(diǎn)、難點(diǎn)
根據(jù)新課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我將本節(jié)課的重難點(diǎn)確立為因式分解的概念,通過多層次展示,多角度分析,多方面練習(xí),以達(dá)到突出重點(diǎn),突破難點(diǎn)的目的。
二、教法分析
數(shù)學(xué)是思維的體操,是一門以培養(yǎng)人的思維,發(fā)展人的思維為目的的重要學(xué)科,因此,在教學(xué)中,教師不僅要使學(xué)生“知其然”,更要使學(xué)生“知其所以然”。
我們在師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程?;诒竟?jié)課的特點(diǎn)和學(xué)生的實(shí)際情況,主要采用啟發(fā)誘導(dǎo)、自主學(xué)習(xí)、合作探疑相結(jié)合等教學(xué)方法。
三、學(xué)法指導(dǎo)
現(xiàn)代的文盲不再是不識字的人,而是不會學(xué)習(xí)的人。數(shù)學(xué)課重在讓學(xué)生逐漸學(xué)會自主學(xué)習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣和規(guī)范的數(shù)學(xué)思維方式、方法。基于此,在學(xué)生的學(xué)習(xí)過程中,教師要對學(xué)生順勢啟發(fā)、恰當(dāng)點(diǎn)撥,以達(dá)到優(yōu)化學(xué)生學(xué)習(xí)結(jié)構(gòu)的目的。
結(jié)合教材、教法和學(xué)情,本節(jié)課借助多媒體、活頁學(xué)案等輔助手段進(jìn)行,以達(dá)到增加課堂直觀效果,打造高效課堂的目的。
四、教學(xué)過程
結(jié)合《數(shù)學(xué)新課標(biāo)》和學(xué)生已有的知識及生活經(jīng)驗(yàn),根據(jù)新課改的理念,本節(jié)課我主要設(shè)計(jì)以下幾個(gè)教學(xué)環(huán)節(jié):①溫故知新(3分鐘)②探究新知(25分鐘)③基礎(chǔ)過關(guān)(7分鐘)④課堂小結(jié)(3分鐘)⑤課堂自測(5分鐘)⑥課堂質(zhì)疑(2分鐘)
接著,我再細(xì)說一下這幾個(gè)環(huán)節(jié)
?。ㄒ唬毓手?/p>
給出以下兩個(gè)搶答題
這一環(huán)節(jié)的目的既達(dá)到溫習(xí)乘法分配律,又起到預(yù)熱學(xué)生思維的目的,以保證學(xué)生盡快進(jìn)入課堂學(xué)習(xí)的角色。
?。ǘ┨骄啃轮?/p>
1、因式分解的概念
?。?)想一想
能被 整除嗎?還能被哪些數(shù)整除?你是怎么得出來的?
?。?)議一議
你能嘗試把a(bǔ)3-a化成幾個(gè)整式的乘積的形式嗎?與同伴交流.
?。?)拼一拼
分別寫出箭頭兩邊的面積
_____________________________=___________________
《因式分解》說課稿8
我說課的題目是選自華東師大版,八年級上冊,第十四章第四節(jié),因式分解,這是初中數(shù)學(xué)傳統(tǒng)的經(jīng)典,在新課標(biāo)的理念下,重新理解它深刻的內(nèi)涵。
為此,我設(shè)定說課程序是:
一、重新審視因式分解的教育價(jià)值
二、教材處理的設(shè)想
三、教學(xué)總體設(shè)計(jì)
四、教學(xué)過程概述
?。ㄒ唬┲匦聦徱曇蚴椒纸獾慕逃齼r(jià)值
傳統(tǒng)的因式分解,是數(shù)學(xué)的工具使學(xué)生熟練掌握一些因式分解技能技巧,本來十分簡單的問題演繹得十分復(fù)雜(如填數(shù)法,拆項(xiàng)法,湊和法,十字相乘法)
新課程把因式分解作為培養(yǎng)學(xué)生逆向思維,全面思考,靈活解決矛盾的載體。為此,淡化理論。簡化難題,緊緊掌握最基本的教學(xué)方法(提取公因式法和公式法)即可。這是新課程體現(xiàn)教育價(jià)值最明顯的變化。為此,在學(xué)生思維方法和對世上的事,要正,反兩方面認(rèn)識上下功夫,是這節(jié)課的重要所在。
通過整式乘法與因式分解互為逆向變換,使學(xué)生澄清這種逆是反過來的變換,不是逆運(yùn)算—是教學(xué)的難點(diǎn)(逆運(yùn)算,是在一個(gè)算式中,以兩種形式不同實(shí)質(zhì)不變的兩種運(yùn)算,而因式分解是一種恒等變換的兩種說法)
為實(shí)現(xiàn)本節(jié)課的教育價(jià)值,在教學(xué)目標(biāo)的確定上,重點(diǎn)考慮我的學(xué)生理解能力弱,善于模仿,滿足于一知半解,我確定:
1、知識的能力目標(biāo):理解因式分解的意義,掌握提取公因式法和公式法,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生創(chuàng)編因式分解題目的能力
2、方法與過程目標(biāo):采用自學(xué)自練的方法,逐見打開學(xué)生思維的大門,學(xué)會兩分法看問題,體驗(yàn)知識發(fā)生過程就是學(xué)生思維發(fā)展的全過程
3、情感態(tài)度與價(jià)值觀:通過情境教學(xué),使學(xué)生在參與中激發(fā)學(xué)習(xí)情感,關(guān)注每一個(gè)學(xué)生的思維變化,鼓勵(lì)成功全面體現(xiàn)學(xué)生的價(jià)值觀,使學(xué)生滿腔熱忱,科學(xué)積極的態(tài)度,投入本節(jié)課的學(xué)習(xí)
?。ǘ┙滩奶幚碓O(shè)想
我以我是教學(xué)資源的開發(fā)者的身份,重新組織教學(xué)內(nèi)容,增加教學(xué)情境的創(chuàng)設(shè),明確目的與動(dòng)機(jī),用實(shí)際問題是學(xué)生體驗(yàn)到這節(jié)內(nèi)容的價(jià)值(見教學(xué)過程)
?。ㄈ┙虒W(xué)總體設(shè)計(jì)
教學(xué)總體框架:教師設(shè)計(jì)生活中的實(shí)際問題,使學(xué)生在問題情境中展開思考→通過揭示因式分解的概念學(xué)習(xí)因式分解的意義→學(xué)生實(shí)踐探索,發(fā)現(xiàn)提取公因式和公式法→熟練運(yùn)用這種方法解題,發(fā)展學(xué)生的理性思維→通過學(xué)生的編題活動(dòng),培養(yǎng)學(xué)生思維創(chuàng)造性。
教學(xué)的主體是概念與方法20分鐘訓(xùn)練上主題部分由學(xué)生自主探索,合作學(xué)習(xí)。
?。ㄋ模┙虒W(xué)過程概述
教學(xué)環(huán)節(jié)一:創(chuàng)設(shè)情境:“去過本溪嗎?”“本溪的著名礦產(chǎn)是什么?”〈鐵礦〉本溪歪頭山的鐵礦石,每噸含鐵75%,采礦工人第一天采礦石203噸,那么,第一天礦石含鐵多少?(75%×203)第二天采礦石198噸含鐵(75%×198)第三天采礦216噸,含鐵(75%×216)現(xiàn)將這三天采礦石的含鐵量總數(shù)用代數(shù)式表示:75%×203+75%×198+75%×216,還可表示:75%(203+198+216),若果用a表示75%,用x、y、z表示三天的采礦數(shù)就有ax+ay+az=a(x+y+z)
通過此例,揭示因式分解的概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,就是因式分解,結(jié)合ax+ay+az=a(x+y+z)揭示,這種方法叫提取公因式法“正好相反”通過討論,認(rèn)識到整式乘法與因式分解不是逆運(yùn)算,而是互逆變換,從而突破了教學(xué)難點(diǎn),實(shí)現(xiàn)了教學(xué)的第一目標(biāo)
教學(xué)環(huán)節(jié)二:思維在探索中展開:教學(xué)中,抓住“反過來”讓學(xué)生從思維的逆向考慮,如何分解因式,這里在學(xué)生完成
a(x+y+z)=ax+ay+az的基礎(chǔ)上,再完成
ax+ay+az=a(x+y+z)
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)(a+b)
?。ㄖ普n件)
整式乘法因式分解
原型單項(xiàng)式與多項(xiàng)式、多項(xiàng)式與多項(xiàng)式相乘單項(xiàng)式與單項(xiàng)式、單項(xiàng)式與多項(xiàng)式、多項(xiàng)式與多項(xiàng)式相加
結(jié)果多項(xiàng)式因式乘積
范圍都能完成不能完成:3ab+5ac+7mn
在學(xué)生的實(shí)踐過程中,認(rèn)識到多項(xiàng)式的因式分解是有條件限制的,不是所有的多項(xiàng)式都能因式分解。因此,會觀察,判斷,十分重要。
教學(xué)環(huán)節(jié)三:思維在展開教學(xué)中定勢:本節(jié)課重點(diǎn),掌握1、提取公因式法2、公式法對于這一新知識點(diǎn),學(xué)生感到陌生,必須先使他們頭腦中牢記,這就是先形成的思維定式
例如,公式法中,平方差公式a2—b2=(a+b)(a—b)
如—a2+25b216x2—4/9y2
特點(diǎn):1兩項(xiàng)式2平方3異號
教學(xué)環(huán)節(jié)四:思維在編題中創(chuàng)新:學(xué)生在認(rèn)識整式乘法與因式分解的關(guān)系后,就不難編出很多因式分解的題目來(要求編題中,簡單,明了,易解)
總之,教學(xué)的著眼點(diǎn),不是熟練技能,而是發(fā)展思維,使學(xué)生在學(xué)習(xí)情感,態(tài)度的價(jià)值觀上發(fā)生深刻的變化。
【《因式分解》說課稿】相關(guān)文章: